Online Library Dissolution Techniques For Evaluation Of Novel Drug
Fast Dissolving/Disintegrating Dosage Forms (FDDFs) have been commercially available since the late 1990s. FDDFs were initially available as orodispersible tablets, and later, as orodispersible films for treating specific populations (pediatrics, geriatrics, and psychiatric patients). Granules, pellets and mini tablets are among the latest additions to these dosage forms, which are still in the development pipeline. As drug delivery systems, FDDFs enable quicker onset of action, immediate drug delivery, and sometimes offer bioavailability benefits due to buccal/sublingual absorption. With time, FDDF have evolved to deliver drugs in a sustained and controlled manner. Their current market and application is increasing in demands with advances in age adapted dosage forms for different patients and changing regulatory requirements that warrant mandatory assessments of new drugs and drug products before commercial availability. This book presents detailed information about FDDFs from their inception to recent developments. Readers will learn about the technical details of various FDDF manufacturing methods, formulation aspects, evaluation and methods to conduct clinical studies. The authors also give examples of marketed fast disintegrating/dissolving drug products in US, Europe, Japan, and India. This reference is ideal for pharmacology students at all levels seeking information about this specific form of drug delivery and formulation.
Online Library Dissolution Techniques For Evaluation Of Novel Drug Research Advancements in Pharmaceutical, Nutritional, and Industrial Enzymology

The first edition of Inductively Coupled Plasma Spectrometry and its Applications was written as a handbook for users who wanted a better understanding of the theory augmented by a practical insight of how best to approach a range of applications, and to provide a useful starting point for users trying an approach or technique new to them. These objectives have been retained in the second edition but a slight shift in emphasis gives the volume an overall perspective that is more forward looking. Structured into 11 chapters, the current edition is a thorough revision of the original, covering the principles of inductively coupled plasmas, instrumentation, methodology and applications within environmental analysis, earth science, food science and clinical medicine. Each chapter, written by internationally recognised leaders in their specific subject areas, provides enough detail to be useful to both the new and experienced users. Full account is taken of recent developments, such as high resolution instruments, novel detection systems and electrospray techniques. Written for all analytical scientists but particularly those involved in atomic spectroscopy and in environmental, geochemical, clinical or food analysis, this timely and informative book will be an essential reference in their use of inductively coupled plasmas to achieve their own scientific goals.

Developing Solid Oral Dosage Forms

Dissolution experiments were conducted on radioactive sludge from Tank 7, before transfer of the contents of Tank 7 to Tank 51, and the subsequent sludge in Tank 51 to evaluate the effectiveness of the DWPF Cold Chem Method. The DWPF Cold Chem Method is a room temperature dissolution method (DWPF Cold Chem Method) used in the DWPF on the Slurry Receipt and Adjustment Tank (SRAT) samples in preparation for instrumental analysis. Four types of dissolutions experiments were carried out,
Online Library Dissolution Techniques For Evaluation Of Novel Drug

Pharmaceutical Dissolution Testing

Pharmaceutical Preformulation and Formulation: A Practical Guide reflects the mounting pressure on pharmaceutical companies to accelerate the new drug development and launch process, as well as the shift from developing small molecules to the growth of biopharmaceuticals. The book meets the need for advanced information for drug preformulation and formulation and addresses the current trends in the continually evolving pharmaceutical industry. Topics include: Candidate drug selection Drug discovery and development Preformulation predictions and drug selections Product design to commercial dosage form Biopharmaceutical support in formulation Development The book is ideal for practitioners working in the pharmaceutical arena including R&D scientists, technicians, and managers as well as for undergraduate and postgraduate courses in industrial pharmacy.
Online Library Dissolution Techniques For Evaluation Of Novel Drug

There are unique challenges in the formulation, manufacture, analytical chemistry, and regulatory requirements of low-dose drugs. This book provides an overview of this specialized field and combines formulation, analytical, and regulatory aspects of low-dose development into a single reference book. It describes analytical methodologies like dissolution testing, solid state NMR, Raman microscopy, and LC-MS and presents manufacturing techniques such as granulation, compaction, and compression. Complete with case studies and a discussion of regulatory requirements, this is a core reference for pharmaceutical scientists, regulators, and graduate students.

Generic Drug Product Development

Industrial residues are obtained from all treatments of raw materials in industry during the process of mining, raw materials treatment and final usage. During these processes of enrichment, optimization and utilization of raw materials only part of the original material can be used for the dedicated application and some left-over parts remain. This contribution focuses on residues like mining overburdens, ore residues and ore processing residues like slags, but also on incineration ashes and water purification muds. Natural materials like pozzolanes, due to their potential of CO2-reduction, are also included. Based on this knowledge secondary reusable materials due to their chemical, physical and mineralogical properties can be identified. Also different characterization methods for analysing the potential for further application of these residues are included.

ICP-AES Method for Metals in Air
Evaluation of Defense Waste Processing Facility (DWPF) Chemical Process Cell (CPC) cycle time identified several opportunities to improve the CPC processing time. The Mechanical Systems & Custom Equipment Development (MS & CED) Section of the Savannah River National Laboratory (SRNL) recently completed the evaluation of one of these opportunities — the possibility of using an Isolok sampling valve as an alternative to the Hydragard valve for taking DWPF process samples at the Slurry Mix Evaporator (SME). The use of an Isolok for SME sampling has the potential to improve operability, reduce maintenance time, and decrease CPC cycle time. The SME acceptability testing for the Isolok was requested in Task Technical Request (TTR) HLW-DWPF-TTR-2010-0036 and was conducted as outlined in Task Technical and Quality Assurance Plan (TTQAP) SRNLRP-2011-00145.

RW-0333P QA requirements applied to the task, and the results from the investigation were documented in SRNL-STI-2011-00693. Measurement of the chemical composition of study samples was a critical component of the SME acceptability testing of the Isolok. A sampling and analytical plan supported the investigation with the analytical plan directing that the study samples be prepared by a cesium carbonate (Cs2CO3) fusion dissolution method and analyzed by Inductively Coupled Plasma - Optical Emission Spectroscopy (ICP-OES). The use of the cesium carbonate preparation method for the Isolok testing provided an opportunity for an additional assessment of this dissolution method, which is being investigated as a potential replacement for the two methods (i.e., sodium peroxide fusion and mixed acid dissolution) that have been used at the DWPF for the analysis of SME samples. Earlier testing of the Cs2CO3 method yielded promising results which led to a TTR from Savannah River Remediation, LLC (SRR) to SRNL for additional support and an associated TTQAP to direct the SRNL efforts. A technical report resulting from this work was issued that recommended that the mixed acid method be replaced by the...
Online Library Dissolution Techniques For Evaluation Of Novel Drug

Pharmaceutical Preformulation and Formulation
Due to a worldwide need for lower cost drug therapy, use of generic and multi-source drug products have been increasing. To meet international patent and trade agreements, the development and sale of these products must conform to national and international laws, and generic products must prove that they are of the same quality and are therapeutically equivalent to the brand name alternative. However, many countries have limited resources to inspect and verify the quality of all drug products for sale in their country. This title discusses the worldwide legislative and regulatory requirements for the registration of generic and multi-source drug products.

Handbook of Pharmaceutical Controlled Release Technology
Online Library Dissolution Techniques For Evaluation Of Novel Drug

The need to validate an analytical or bioanalytical method is encountered by analysts in the pharmaceutical industry on an almost daily basis, because adequately validated methods are a necessity for approvable regulatory filings. What constitutes a validated method, however, is subject to analyst interpretation because there is no universally accepted industry practice for assay validation. This book is intended to serve as a guide to the analyst in terms of the issues and parameters that must be considered in the development and validation of analytical methods. In addition to the critical issues surrounding method validation, this book also deals with other related factors such as method development, data acquisition, automation, cleaning validation and regulatory considerations. The book is divided into three parts. Part One, comprising two chapters, looks at some of the basic concepts of method validation. Chapter 1 discusses the general concept of validation and its role in the process of transferring methods from laboratory to laboratory. Chapter 2 looks at some of the critical parameters included in a validation program and the various statistical treatments given to these parameters. Part Two (Chapters 3, 4 and 5) of the book focuses on the regulatory perspective of analytical validation. Chapter 3 discusses in some detail how validation is treated by various regulatory agencies around the world, including the United States, Canada, the European Community, Australia and Japan. This chapter also discusses the International Conference on Harmonization (ICH) treatment of assay validation. Chapters 4 and 5 cover the issues and various perspectives of the recent United States vs. Barr Laboratories Inc. case involving the retesting of samples. Part Three (Chapters 6 - 12) covers the development and validation of various analytical components of the pharmaceutical product development process. This part of the book contains specific chapters dedicated to bulk drug substances and finished products, dissolution studies, robotics and automated workstations, biotechnology products, biological samples, analytical methods for cleaning procedures and computer systems and computer-aided validation. Each chapter goes into some detail describing the
Online Library Dissolution Techniques For Evaluation Of Novel Drug

Critical development and related validation considerations for each topic. This book is not intended to be a practical description of the analytical validation process, but more of a guide to the critical parameters and considerations that must be attended to in a pharmaceutical development program. Despite the existence of numerous guidelines including the recent attempts by the ICH to be implemented in 1998, the practical part of assay validation will always remain, to a certain extent, a matter of the personal preference of the analyst or company. Nevertheless, this book brings together the perspectives of several experts having extensive experience in different capacities in the pharmaceutical industry in an attempt to bring some consistency to analytical method development and validation.

In Vitro-In Vivo Correlations

Acid Dissolution Method for the Analysis of Plutonium in Soil

This book is the first text to provide a comprehensive assessment of the application of fundamental principles of dissolution and drug release testing to poorly soluble compounds and formulations. Such drug products are, vis-à-vis their physical and chemical properties, inherently incompatible with aqueous dissolution. However, dissolution methods are required for product development and selection, as well as for the fulfillment of regulatory obligations with respect to biopharmaceutical assessment and product quality understanding. The percentage of poorly soluble drugs, defined in classes 2 and 4 of the Biopharmaceutics Classification System (BCS), has significantly increased in the modern pharmaceutical development pipeline. This book provides a thorough exposition of general method development strategies for such drugs, including instrumentation and media selection, the use of compendial and non-compendial techniques in product development, and phase-appropriate...
Online Library Dissolution Techniques For Evaluation Of Novel Drug

Emerging topics in the field of dissolution are also discussed, including biorelevant and biphasic dissolution, the use on enzymes in dissolution testing, dissolution of suspensions, and drug release of non-oral products. Of particular interest to the industrial pharmaceutical professional, a brief overview of the formulation and solubilization techniques employed in the development of BCS class 2 and 4 drugs to overcome solubility challenges is provided and is complemented by a collection of chapters that survey the approaches and considerations in developing dissolution methodologies for enabling drug delivery technologies, including nanosuspensions, lipid-based formulations, and stabilized amorphous drug formulations.

Pharmaceutical Dosage Forms - Tablets

Pharmaceutical product development is a multidisciplinary activity involving extensive efforts in systematic product development and optimization in compliance with regulatory authorities to ensure the quality, efficacy and safety of resulting products. Pharmaceutical Product Development equips the pharmaceutical formulation scientist with extensive and up-to-date knowledge of drug product development and covers all steps from the beginning of product conception to the final packaged form that enters the market and lifecycle management thereof. Applications of core scientific principles for product development are also thoroughly discussed in conjunction with the latest approaches involving design of experiment and quality by design with comprehensive illustrations based on practical case studies of several dosage forms. The book presents pharmaceutical product development information in an easy-to-read mode with simplified theories, case studies and guidelines for students, academicians and professionals in the pharmaceutical industry. It is an invaluable resource and hands-on guide covering managerial, regulatory and practical aspects of pharmaceutical product lifecycle management.
Acid Dissolution Method for the Analysis of Plutonium in Soil

Nitroglycerin Sustained Release Tablet. Formulation Design and Evaluation

This book represents the invited presentations and some of the posters presented at the conference entitled "In Vitro-In Vivo Relationship (IVIVR) Workshop" held in September, 1996. The workshop was organized by the IVIVR Cooperative Working Group which has drawn together scientists from a number of...
Online Library Dissolution Techniques For Evaluation Of Novel Drug Organizations and institutions, both academic and industrial. In addition to Elan Corporation, which is a drug delivery company specializing in the development of ER (Extended Release) dosage forms, the IVIVR Cooperative Working Group consists of collaborators from the University of Maryland at Baltimore, University College Dublin, Trinity College Dublin, and the University of Nottingham in the UK. The principal collaborators are: Dr. Jackie Butler, Elan Corporation Prof. Owen Corrigan, Trinity College Dublin Dr. lain Cumming, Elan Corporation Dr. John Devane, Elan Corporation Dr. Adrian Dunne, University College Dublin Dr. Stuart Madden, Elan Corporation Dr. Colin Melia, University of Nottingham Mr. Tom O'Hara, Elan Corporation Dr. Deborah Piscitelli, University of Maryland at Baltimore Dr. Araz Raoof, Elan Corporation Mr. Paul Stark, Elan Corporation Dr. David Young, University of Maryland at Baltimore The purpose of the workshop was to discuss new concepts and methods in the development of in vitro-in vivo relationships for ER products. The original idea went back approximately 15 months prior to the workshop itself. For some time, the principal collaborators had been working together on various aspects of dosage form development.

ERDA Energy Research Abstracts

EVALUATION OF LOW TEMPERATURE ALUMINUM DISSOLUTION IN TANK 51

A knowledge of clay is important in many spheres of scientific endeavor, particularly in natural sciences such as geology, mineralogy and soil science, but also in more applied areas like environmental and materials science. Over the last two decades research into clay mineralogy has been strongly influenced by the development and application of a number of spectroscopic techniques which are now able to yield information about clay materials at a level of detail that previously would have seemed inconceivable. This information relates not only to the precise
Online Library Dissolution Techniques For Evaluation Of Novel Drug

Characterization of the individual clay components themselves, but also to the ways in which these components interact with a whole range of absorbate molecules. At present, however, the fruits of this research are to be found principally in a somewhat widely dispersed form in the scientific journals, and it was thus considered to be an appropriate time to bring together a compilation of these spectroscopic techniques in a way which would make them more accessible to the non-specialist. This is the primary aim of this book. The authors of the various chapters first describe the principles and instrumentation of the individual spectroscopic techniques, assuming a minimum of prior knowledge, and then go on to show how these methods have been usefully applied to clay mineralogy in its broadest context.

Inductively Coupled Plasma Spectrometry and its Applications

A practical guide to Quality by Design for pharmaceutical product development Pharmaceutical Quality by Design: A Practical Approach outlines a new and proven approach to pharmaceutical product development which is now being rolled out across the pharmaceutical industry internationally. Written by experts in the field, the text explores the QbD approach to product development. This innovative approach is based on the application of product and process understanding underpinned by a systematic methodology which can enable pharmaceutical companies to ensure that quality is built into the product. Familiarity with Quality by Design is essential for scientists working in the pharmaceutical industry. The authors take a practical approach and put the focus on the industrial aspects of the new QbD approach to pharmaceutical product development and manufacturing. The text covers quality risk management tools and analysis, applications of QbD to analytical methods, regulatory aspects, quality systems and

Page 13/23
Online Library Dissolution Techniques For Evaluation Of Novel Drug

Pharmaceutical Quality by Design offers a guide to the principles and application of Quality by Design (QbD), the holistic approach to manufacturing that offers a complete understanding of the manufacturing processes involved, in order to yield consistent and high-quality products.

Oral Drug Absorption

Developing Solid Oral Dosage Forms is intended for pharmaceutical professionals engaged in research and development of oral dosage forms. It covers essential principles of physical pharmacy, biopharmaceutics, and industrial pharmacy as well as various aspects of state-of-the-art techniques and approaches in pharmaceutical sciences and technologies, along with examples and/or case studies in product development. The objective of this book is to offer updated (or current) knowledge and skills required for rational oral product design and development. The specific goals are to provide readers with:

- Basics of modern theories of physical pharmacy, biopharmaceutics, and industrial pharmacy and their applications throughout the entire process of research and development of oral dosage forms
- Tools and approaches of preformulation investigation, formulation/process design, characterization and scale-up in pharmaceutical sciences and technologies
- New developments, challenges, trends, opportunities, intellectual property issues, and regulations in solid product development

The first book (ever) that provides
Online Library Dissolution Techniques For Evaluation Of Novel Drug

Dissolution testing is an important parameter which helps to determine the quality of the drug. It is a crucial step in the development of drug products, as it helps to ensure that the drug will be released in the correct form and concentration. Dissolution testing is performed to determine the rate at which a drug is released from a dosage form, and it is used to assess the potential for drug delivery.

The dissolution testing process involves the following steps:

1. Preparation of the dissolution medium: The dissolution medium is prepared by dissolving the required amount of drug in an appropriate solvent. The solvent is chosen based on the solubility of the drug.
2. Preparation of the dosage form: The dosage form is prepared by incorporating the drug into the appropriate matrix or carrier.
3. Dissolution testing: The dosage form is placed in the dissolution medium, and the dissolution is monitored over time. The dissolution is usually measured by determining the amount of drug that is released from the dosage form at regular intervals.
4. Evaluation of the dissolution results: The dissolution results are evaluated to determine if the drug is being released at the desired rate. The dissolution profile is analyzed to determine if the drug is being released uniformly and if the desired concentration is being achieved.

The dissolution testing process is important for the development of drug products, as it helps to ensure that the drug is being released in the correct form and concentration. It is also important for the approval of new drug products, as it is a key parameter that is used by regulatory agencies to assess the quality of the drug.

The dissolution testing process is typically performed using a dissolution apparatus, which is designed to simulate the in vivo conditions of drug delivery. The dissolution apparatus is used to monitor the dissolution of the drug, and the results are used to determine if the drug is being released at the desired rate.

In conclusion, dissolution testing is an important parameter that is used to assess the quality of drug products. It is a crucial step in the development of drug products, as it helps to ensure that the drug is being released in the correct form and concentration. The dissolution testing process is typically performed using a dissolution apparatus, and the results are used to determine if the drug is being released at the desired rate.

Development and Validation of Analytical Methods

The Handbook of Pharmaceutical Controlled Release Technology reviews the design, fabrication, methodology, administration, and classifications of various drug delivery systems, including matrices, and membrane controlled reservoir, bioerodible, and pendant chain systems. Contains cutting-edge research on the controlled delivery of biomolecules! Discussing the advantages and limitations of controlled release systems, the Handbook of Pharmaceutical Controlled Release Technology covers oral, transdermal, parenteral, and implantable delivery of drugs discusses modification methods to achieve desired release kinetics highlights constraints of system design for practical clinical application analyzes diffusion equations and mathematical modeling considers environmental acceptance and tissue compatibility of biopolymeric systems for biologically active agents evaluates polymers as drug delivery carriers describes peptide, protein, micro-, and nanoparticulate release systems examines the cost, comfort, disease control, side effects, and patient compliance of numerous delivery systems and devices and more!
Online Library Dissolution Techniques For Evaluation Of Novel Drug

Introduction, Historical Highlights, and the Need for Dissolution Testing

Theories of Dissolution

Dissolution Testing Devices

Automation in Dissolution Testing, by William A. Hanson and Albertha M. Paul

Factors That Influence Dissolution Testing

Interpretation of Dissolution Rate Data

Techniques and of In Vivo Dissolution, by Umesh V. Banakar, Chetan D. Lathia, and John H. Wood

Dissolution of Dosage Forms

Dissolution of Modified-Release Dosage Forms

Dissolution and Bioavailability

Dissolution Testing and the Assessment of Bioavailability/Bioequivalence, by Santosh J. Vetticaden

Dissolution Rediscovered, by John H. Wood

Appendix: USP/NF Dissolution Test.

Evaluation of the DWPF Cold Chem Dissolution Method with Tank 7 and Tank 51 Radioactive Sludge

This book is an up-to-date and authoritative account on physicochemical principles, pharmaceutical and biomedical applications of hydrogels. It consists of eight contributions from different authors highlighting properties and synthesis of hydrogels, their characterization by various instrumental methods of analysis, comprehensive review on stimuli-responsive hydrogels and their diverse applications, and a special section on self-healing hydrogels. Thus, this book will equip academia and industry with adequate basic and applied principles related to hydrogels.

Emerging Concepts in Analysis and Applications of Hydrogels

The highly experienced authors here present readers with step-wise, detail-conscious information to develop quality pharmaceuticals. The book is made up of carefully crafted sections introducing key concepts and advances in the areas of dissolution, BA/BE, BCS, IVIC, and product quality. It provides a specific focus on the integration of regulatory considerations and includes case studies.
Online Library Dissolution Techniques For Evaluation Of Novel Drug Histories highlighting the biopharmaceutics strategies adopted in development of successful drugs.

Formulation and Analytical Development for Low-Dose Oral Drug Products

Oral Drug Absorption, Second Edition thoroughly examines the special equipment and methods used to test whether drugs are released adequately when administered orally. The contributors discuss methods for accurately establishing and validating in vitro/in vivo correlations for both MR and IR formulations, as well as alternative approaches for MR and IR formulations.

Poorly Soluble Drugs

Liquid Waste Organization (LWO) identified aluminum dissolution as a method to mitigate the effect of having about 50% more solids in High Level Waste (HLW) sludge than previously planned. Previous aluminum dissolution performed in a HLW tank in 1982 was performed at approximately 85°C for 5 days, which became the baseline aluminum dissolution process. LWO initiated a project to modify a waste tank to meet these requirements. Subsequent to an alternative evaluation, LWO management identified an opportunity to perform aluminum dissolution on sludge destined for Sludge Batch 5, but within a limited window that would not allow time for any modifications for tank heating. A variation of the baseline process, dubbed Low Temperature Aluminum Dissolution (LTAD), was developed based on the constraint of available energy input in Tank 51 and the window of opportunity, but was not constrained to a minimum extent of dissolution, i.e. dissolve as much aluminum as possible within the time available. This process was intended to operate between 55 and 70°C, but for a significantly longer time than the baseline process. LTAD proceeded in parallel with the baseline project. The preliminary evaluation at the completion of LTAD focused on the material balance and extent of the aluminum dissolved. The range of values...
Online Library Dissolution Techniques For Evaluation Of Novel Drug

Dissolution at about 60°C for 46 days dissolved 64% of the aluminum from the sludge slurry. The aluminum-laden leach solution decanted to Tank 11 can be blended with a wide variety of supernates without risk of precipitating the dissolved aluminum based on thermodynamic chemical equilibrium models. Uranium and plutonium leached into solution without corresponding leaching of iron or metal other than aluminum, but the total mass leached was a small fraction of the total uranium and plutonium in the sludge. The concentration of uranium and plutonium in the leach solution was indistinguishable from other tank farm supernates, thus, the leach solutions can be managed relative to the risk of criticality like any other supernate. A small amount of mercury leached into solution from the sludge causing the liquid phase concentration to increase 6 to 10 fold, which is consistent with the 4 to 14 fold increase observed during the 1982 aluminum dissolution demonstration. Chromium did not dissolve during LTAD. Chloride concentration increased in the liquid phase during LTAD due to chloride contamination in the 50% sodium hydroxide solution. The rate of heat loss from Tank 51 at temperatures above 45°C appeared linear and predictable at 8×10^7 cal/hr. The rate of heat transfer from Tank 51 did not follow a simplified bulk heat transfer model. Prediction of the aluminum dissolution rate model and actual dissolution rate.
Online Library Dissolution Techniques For Evaluation Of Novel Drug

The evaluation of novel drug dissolution techniques was prone to error due to a lack of specific surface area data of sludge particles. The higher than expected dissolution rate during LTAD was likely due to smaller than expected particle sizes of most of the sludge particles. While evaluating the LTAD process, the dissolved salt solution from Tank 41 that was stored and sampled in Tank 49 was determined to be supersaturated relative to aluminum. Supersaturation in Tank 49 is not a risk to LTAD. However, storing and processing of this supernate carries a risk of solids precipitation, primarily in the form of gibbsite or boehmite. Blending with the supernate in Tank 11 neither increases nor decreases this risk. LTAD was initiated as an opportunity to substantially mitigate the planned increase in canister production and DWPF lifecycle after the realization of more sludge solids stored in the HLW tanks. As determined from the preliminary evaluation of LTAD, the direct benefit of the decanted liquid stored in Tank 11 represents 45 canisters at 34% waste loading with potential indirect benefits for much larger reductions. Application of an aluminum dissolution process to the remaining high aluminum content sludge will potentially reduce the planned canister production by several hundred canisters at 34%-38% waste loading.

Acid Dissolution Method for the Analysis of Plutonium in Soil

Loratadine is a non-sedative antihistaminic drug. Its major use is in control of congestion, sneezing, runny nose and itching that a patient suffers with an allergic attack or an infection. It has poor solubility in water. Therefore, the solubility and drug release were enhanced using the solid dispersion technique and fast dissolving tablet were formulated. Solid dispersion prepared using Poloxamer 407, PEG 6000 and urea. The solid dispersion were evaluated for saturation solubility, drug content and in vitro dissolution study and it was characterized using FT-IR, X-RD, SEM and DSC study. The fast dissolving tablets of loratadine was formulated using crospovidone and crosscarmelose sodium by direct compression.

Page 19/23
Online Library Dissolution Techniques For Evaluation Of Novel Drug

A novel drug was formulated as an extended release tablet dosage form. The tablets were evaluated for thickness, hardness, weight variation, friability, disintegration time and % in vitro drug release. A 32 factorial design was used to study the effect of Loratadine: Poloxamer 407 and crospovidone on disintegration time and % in vitro drug release. The responses were analyzed using ANOVA. The obtained model was validated & optimized formulation was prepared as suggested by the software.

Pharmaceutical Product Development

Dissolution Theory, Methodology, and Testing

Dosage Form Design Parameters, Volume I, examines the history and current state of the field within the pharmaceutical sciences, presenting key developments. Content includes drug development issues, the scale up of formulations, regulatory issues, intellectual property, solid state properties and polymorphism. Written by experts in the field, this volume in the Advances in Pharmaceutical Product Development and Research series deepens our understanding of dosage form design parameters. Chapters delve into a particular aspect of this fundamental field, covering principles, methodologies and the technologies employed by pharmaceutical scientists. In addition, the book contains a comprehensive examination suitable for researchers and advanced students working in pharmaceuticals, cosmetics, biotechnology and related industries. Examines the history and recent developments in drug dosage forms for pharmaceutical sciences Focuses on physicochemical aspects, prefomulation solid state properties and polymorphism Contains extensive references for further discovery and learning that are appropriate for advanced undergraduates, graduate students and those interested in drug dosage design Evaluation of ARG-1 Samples Prepared by Cesium Carbonate Dissolution During the Isolok Sme Acceptability Testing
The aim of the present studies was to develop and characterize 2.6 mg sustained release matrix tablets of Nitroglycerin. Tablets were prepared by direct compression method. Methocel K15M CR and Methocel K100LV CR polymers were used as rate retarding agents in nine formulations (F-1 to F-9). The granules were evaluated for angle of repose, loose bulk density, tapped bulk density, Carr's index, Hausner ratio, moisture content, total porosity and assay. The tablets were subjected to diameter, thickness, assay, uniformity of content, assay after 1 Month at 40°C+75%RH, hardness, friability, and in vitro dissolution studies. The granules showed satisfactory flow properties, compressibility, and drug content. All the tablet formulations showed acceptable pharmacotechnical properties and complied with pharmacopoeial specifications for tested parameters. The in vitro dissolution study was carried out for 8 hour using USP-2009 Apparatus-I (Rotating basket method) in distilled water as the dissolution medium. The release mechanisms were explored and explained by Zero order, First order, Higuchi, Korsmeyer-Peppas and Hixson-Crowell equations. Nine formulations were prepared by using three variable ratio of two polymers; Methocel K15M CR (25%, 20% and 15%) and Methocel K100LV CR (15%, 10% and 5%) where all the formulations (F-1 to F-9) contained 0.5% colloidal silicon dioxide and 1% magnesium stearate. Among these nine formulations, six formulations; F-2 (Methocel K15M CR: Methocel K100LV CR = 25% : 10%), F-3 (Methocel K15M CR : Methocel K100LV CR = 25% : 5%), F-4 (Methocel K15M CR : Methocel K100LV CR = 20% : 15%) F-5 (Methocel K15M CR: Methocel K100LV CR = 20% : 10%), F-6 (Methocel K15M CR : Methocel K100LV CR = 20% : 5%) and F-7 (Methocel K15M CR : Methocel K100LV CR = 15% : 15%) met the official specification of release profile. It was also found that the type and the amount of polymers significantly affect the time required for 50% (T50% or MDT) of drug release, release rate constant and diffusion exponent. Higher the MDT value indicates a higher drug retaining
Online Library Dissolution Techniques For Evaluation Of Novel Drug

The ultimate goal of drug product development is to design a system that maximizes the therapeutic potential of the drug substance and facilitates its access to patients. Pharmaceutical Dosage Forms: Tablets, Third Edition is a comprehensive resource of the design, formulation, manufacture, and evaluation of the tablet dosage form, an

Clay Mineralogy: Spectroscopic and Chemical Determinative Methods

Enzymes have interesting applications in our biological system and act as valuable biocatalysts. Their various functions allow enzymes to develop new drugs, detoxifications, and pharmaceutical chemistry. Research Advancements in Pharmaceutical, Nutritional, and Industrial Enzymology provides emerging research on biosynthesis, enzymatic treatments, and bioengineering of medicinal waste. While highlighting issues such as structural implications for drug development and food applications, this publication explores information on various applications of enzymes in pharmaceutical, nutritional, and industrial aspects. This book is a valuable resource for medical professionals, pharmacists, pharmaceutical companies, researchers, academics, and upper-
Industrial Waste Dosage Form Design Considerations

Experiments were performed with non-radioactive sludge to determine if the room temperature HF-HNO₃ dissolution method used in the DWPF on the Slurry Receipt and Adjustment Tank samples will be effective on the Sludge Batch 3 feed that contains Tank 7 sludge. This dissolution method is particularly rapid and convenient and has been used in the DWPF for several years to minimize analytical turnaround times.

Current Advances in Drug Delivery Through Fast Dissolving/Disintegrating Dosage Forms